Lon-mediated proteolysis of the FeoC protein prevents Salmonella enterica from accumulating the Fe(II) transporter FeoB under high-oxygen conditions.

نویسندگان

  • Hyunkeun Kim
  • Hwiseop Lee
  • Dongwoo Shin
چکیده

The Salmonella Feo system consists of the FeoA, FeoB, and FeoC proteins and mediates ferrous iron [Fe(II)] import. FeoB is an inner membrane protein that, along with contributions from two small hydrophilic proteins, FeoA and FeoC, transports Fe(II). We previously reported that FeoC binds to and protects the FeoB transporter from FtsH-mediated proteolysis. In the present study, we report proteolytic regulation of FeoC that occurs in an oxygen-dependent fashion. While relatively stable under low-oxygen conditions, FeoC was rapidly degraded by the Lon protease under high-oxygen conditions. The putative Fe-S cluster of FeoC seemed to function as an oxygen sensor to control FeoC stability, as evidenced by the finding that mutation of the putative Fe-S cluster-binding site greatly increased FeoC stability under high-oxygen conditions. Salmonella ectopically expressing the feoB and feoC genes was able to accumulate FeoB and FeoC only under low-oxygen conditions, suggesting that FeoC proteolysis prevents Salmonella from accumulating the FeoB transporter under high-oxygen conditions. Finally, we propose that Lon-mediated FeoC proteolysis followed by FtsH-mediated FeoB proteolysis helps Salmonella to avoid uncontrolled Fe(II) uptake during the radical environmental changes encountered when shifting from low-iron anaerobic conditions to high-iron aerobic conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The FeoC protein leads to high cellular levels of the Fe(II) transporter FeoB by preventing FtsH protease regulation of FeoB in Salmonella enterica.

In the gammaproteobacteria, the FeoA, FeoB, and FeoC proteins constitute the Feo system, which mediates ferrous iron [Fe(II)] import. Of these Feo proteins, FeoB is an inner membrane Fe(II) transporter that is aided by the small protein FeoA. However, the role of another small protein, FeoC, has remained unknown. Here we report that the FeoC protein is necessary for FeoB protein-mediated Fe(II)...

متن کامل

RstA-promoted expression of the ferrous iron transporter FeoB under iron-replete conditions enhances Fur activity in Salmonella enterica.

The Fur protein is a primary regulator that monitors and controls cytoplasmic iron levels. We now report the identification of a regulatory pathway mediated by the Salmonella response regulator RstA that promotes Fur activity. Genome-wide expression experiments revealed that under iron-replete conditions, expression of the RstA protein from a plasmid lowered transcription levels of various gene...

متن کامل

FeoC from Klebsiella pneumoniae contains a [4Fe-4S] cluster.

Iron is essential for pathogen survival, virulence, and colonization. Feo is suggested to function as the ferrous iron (Fe(2+)) transporter. The enterobacterial Feo system is composed of 3 proteins: FeoB is the indispensable component and is a large membrane protein likely to function as a permease; FeoA is a small Src homology 3 (SH3) domain protein that interacts with FeoB; FeoC is a winged-h...

متن کامل

Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium.

The roles of the genes feoB (ABC ferrous iron transporter), mntH (proton-dependent manganese transporter), and sitABCD (putative ABC iron and/or manganese transporter) in Salmonella pathogenicity were investigated by using mutant strains deficient in one, two, or three transporters. Our results indicated that sitABCD encodes an important transporter of Mn(II) and Fe(II) which is required for fu...

متن کامل

The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1.

An early step in the pathogenesis of Salmonella enterica serovar Typhimurium infection is bacterial penetration of the intestinal epithelium. Penetration requires the expression of invasion genes found in Salmonella pathogenicity island 1 (SPI1). These genes are controlled in a complex manner by regulators in SPI1, including HilA and InvF, and those outside SPI1, such as two-component regulator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 197 1  شماره 

صفحات  -

تاریخ انتشار 2015